131 research outputs found

    Output feedback NN control for two classes of discrete-time systems with unknown control directions in a unified approach

    Get PDF
    10.1109/TNN.2008.2003290IEEE Transactions on Neural Networks19111873-1886ITNN

    Data-Driven Dynamic Modeling for Prediction of Molten Iron Silicon Content Using ELM with Self-Feedback

    Get PDF
    Silicon content ([Si] for short) of the molten metal is an important index reflecting the product quality and thermal status of the blast furnace (BF) ironmaking process. Since the online detection of [Si] is difficult and larger time delay exists in the offline assay procedure, quality modeling is required to achieve online estimation of [Si]. Focusing on this problem, a data-driven dynamic modeling method is proposed using improved extreme learning machine (ELM) with the help of principle component analysis (PCA). First, data-driven PCA is introduced to pick out the most pivotal variables from multitudinous factors to serve as the secondary variables of modeling. Second, a novel data-driven ELM modeling technology with good generalization performance and nonlinear mapping capability is presented by applying a self-feedback structure on traditional ELM. The feedback outputs at previous time together with input variables at different time constitute a dynamic ELM structure which has a storage ability to tackle data in different time and overcomes the limitation of static modeling of traditional ELM. At last, industrial experiments demonstrate that the proposed method has a better modeling and estimating accuracy as well as a faster learning speed when compared with different modeling methods with different model structures

    A novel evolutionary algorithm for dynamic constrained multiobjective optimization problems

    Get PDF
    The file attached to this record is the author's final peer reviewed version.To promote research on dynamic constrained multiobjective optimization, we first propose a group of generic test problems with challenging characteristics, including different modes of the true Pareto front (e.g., convexity–concavity and connectedness–disconnectedness) and the changing feasible region. Subsequently, motivated by the challenges presented by dynamism and constraints, we design a dynamic constrained multiobjective optimization algorithm with a nondominated solution selection operator, a mating selection strategy, a population selection operator, a change detection method, and a change response strategy. The designed nondominated solution selection operator can obtain a nondominated population with diversity when the environment changes. The mating selection strategy and population selection operator can adaptively handle infeasible solutions. If a change is detected, the proposed change response strategy reuses some portion of the old solutions in combination with randomly generated solutions to reinitialize the population, and a steady-state update method is designed to improve the retained previous solutions. Experimental results show that the proposed test problems can be used to clearly distinguish the performance of algorithms, and that the proposed algorithm is very competitive for solving dynamic constrained multiobjective optimization problems in comparison with state-of-the-art algorithms
    corecore